Platform Manager[™] 2

Scalable Hardware Management Controller

Platform Manager[™] 2 devices feature programmable analog with FPGA on a single chip to integrate all hardware management (power, thermal and control plane management) functions in a circuit board. The Platform Manager 2 architecture uses centrally located Hardware Management algorithm within the FPGA to control distributed hardware management expanders (L-ASC10 ICs) to integrate power, thermal and control plane management functions cost effectively from simple to complex boards

The Platform Designer[™] tool integrated in Lattice Diamond software provides a single design environment to integrate a circuit board's hardware management using LogiBuilder (GUI based Logic entry), Verilog or VHDL. The correct-by-construction (automatic selection, customization and wiring of IPs for a given design) design methodology enables seamless scaling of analog channels, Digital I/O and FPGA LUTs to optimally meet specific hardware management requirements of a given board.

Power management functions include monitoring, supply sequencing, fault log, voltage scaling/VID control, trimming and margining functions. Thermal Management includes temperature monitoring, fan speed control, power control and fault log. The Control plane management include reset distribution, I2C/SPI port expansion, Level translation, System interface, fault logging, and other glue logic.

Increases Reliability	Ample monitoring resources for full fault coverage Accurate (0.2%) and Fast (<100us) Fault detection on any channel Minimizes fault propagation through abundant communication between hardware management sub-blocks Integrates power, thermal, control plane management algorithm into a single device
Reduces Time to Market	 Single design environment covers wide range of design complexities reducing design time Fully verified hardware management through end-to-end simulation Reduced design effort through correct-by-construction design methodology Distributed sense and centralized control methodology minimizes circuit board layout congestion Fault log, software based regression test support reduces board debug time
Lowers BOM and Cost	Reduce BOM cost up to 50% versus multiple ICs Needs fewer number of I/O in a CPLD Reduced board area and layers saves additional cost
Reduces Risk	 Simulation reduces design errors before board layout Re-programmability minimizes risk of board re-spins Significantly reduces time-to-market

Key Features and Benefits

- Optimized Hardware Management through Scalability
 - 8 to 80 Precision Voltage Monitor Channels
 - 3 to 24 Temperature Monitoring Channels
 - 60 to 334 I/O and 640 to 6864 LUT Density
- Precision Voltage Monitoring Increases Reliability
 - + Programmable Threshold from 0.67V to 5.7V & 4.5V to 13.2V
 - · Differential input sensing
 - · Over/under voltage detection with window comparison
 - 10-bit voltage measurement ADC
- Temperature Monitoring Simplifies Thermal Management
 - Measures Temperature using External Diode
 - Over/under temperature detection
 - Temperature Measurement range -60 to +150C
- High-side current measurement reduces BOM
 - · Measures current across shunt resistor
 - Differential range 7.5mV to 200mV
 - Common mode voltage up to 13V
 - Programmable Gain amplifier for current measurement
 - · Fast fault detection (1µs) and over current detection
- High-Voltage FET Drivers Reduce # POLs needed
 - Scalable from 4 to 32 N-channel MOSFET drivers
 - Digitally controlled power supply ramp control
 - Open drain output support
- Margining and Trimming For Quality Assurance
 - Scale from 4 to 32 power supplies
 - Digital closed-loop mode of operation
 - Voltage scaling and VID control
- PLD to integrate power, thermal & control plane functions
 - Up to 6864 LUT FPGA and up to 334 Digital I/O
 - · Support for multiple interface standards
- System Level Support
 - Single 3.3V or 12V supply operation
 - Industrial temperature range
- In-System Re-programmability Reduces Risk
 - On-chip configuration memory
 - JTAG/I2C programming interface and background update
 - Dual-boot recovery

Platform Manager 2 Architecture

Hardware Management Controller

Analog Sense and Control (L-ASC10) Hardware Management Expander

Hardware Management Using Platform Manager 2

Hardware Management Using MachXO2 + L-ASC10

High # Supplies, High I/O

- Standard Solution Across a Wide Range of Applications
- Single Design Environment with End-to-end Simulation

Platform Designer

Unified, Flexible, Verifiable Design Methodology

Development Tools

Development Boards + Debug Aid Software

- Evaluation Board: Test User Code, Expand System
- Debug User Hardware Using Debug GUI
- Extended Log Hardware Management Events During System Testing

Platform Manager 2 Family

	H/W Management Expander	Hardware Management Controller	
	L-ASC10	LPTM20	LPTM21
Voltage Monitoring Inputs	10	8	10
Current Monitoring Inputs	2	2	2
Temperature Monitoring Inputs	2	2	2
Number of Trimming Channels	4	2	4
MOSFET Drives	4	4	4
On-Chip Non-Volatile Fault Log	\checkmark	\checkmark	\checkmark
Number of LUTs	-	640	1280
Distributed RAM (Kbits)	-	5	10
EBR SRAM (kBits)	-	18	64
Number of EBR Blocks (9 kBits)	-	2	7
User Flash Memory (kBits)	-	24	64
Number of PLLs	-	0	1
Communication I/F	12C	I2C/SPI/JTAG	
Programming Interface	12C	I2C/SPI/JTAG	
perating Voltage 3.3		2.8V to 12V	
Insystem Update Support	Yes		
Package Options	Digital I/Os		
48-pin QFN (7 X 7)	9		
128-pin TQFP (14X14)		60	
237-Ball ftBGA (1mm) (17X17)			106

Applications Support

techsupport@latticesemi.com

E F 🚻 in 🔊

Copyright © 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L (stylized) Lattice Semiconductor Corp., and Lattice (design), Platform ManagerTM 2, Platform DesignerTM, Lattice Diamond, Mach XO2, Lattice L-ASC10, Lattice LPTM20 and Lattice LPTM21 are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.